King Abdulaziz University College of Science

Department of Mathematics

Final Exam-Spring 2009-2010
12/6/2010-29/6/1431
2 hours
Name: \qquad
Student ID: \qquad

Section:

\qquad

Course: Math 342
Title: Abstract Algebra I.
Instructors: Dr. Jehan A. Al-bar \& Dr. Rola A. Hijazi.

1. This exam consists of three parts

Part 1 True/False question (5 marks)	
part 2 Theory questions (... marks)	
I (3 marks) II (5 marks) III (3 marks)	
IV (...marks) VI (3 marks) V (7 marks)	
Part 3 Applications (12 marks)	
I (2 marks) II (1.5 marks) III (3 marks)	
IV (2 marks) VI (1.5 marks) V (2 marks)	
Total marks (40 marks)	

2. Answer ALL questions on the question sheets.
3. This exam sheet consists of $\mathbf{7}$ pages including this page.

True/ False

1	Every subgroup of an Abelian group is normal.	
2	The left coset $a H$ is a subgroup of G.	
3	All generators of Z_{20} are prime numbers.	
4	If $H \leq G$ and $a \in G$, then $a H=H a$.	
5	A factor group of an Abelian group is Abelian.	
6	Every function is a permutation if and only if the function is one-one.	
7	Every cyclic group is Abelian.	
8	If $\phi: G \rightarrow \bar{G}$ is a group homomorphism and e, \bar{e} are the identities in G and \bar{G} respectively, then $\phi(e)=\bar{e}$.	
9	S_{10} has 10 elements.	
10	H is a normal subgroup of a group G if and only if $x H x^{-1} \subseteq H$ for all $x \in G$.	

Theory Questions

I. Consider the group of nonzero rational numbers $G=Q-\{0\}$ with multiplication $(G, *)$. For $H=\left\{2^{n}, n \in Z\right\}$ show that H is a subgroup of G.
II. Let G be a group and H be a normal subgroup of G, show that the set $G / H=\{a H: a \in G\}$ with the multiplication is defined by $(a H)(b H)=a b H$ is a group. Moreover, if G is Abelian group, show that G / H is Abelian.
III. Consider the groups $\left(R^{+}, *\right)$ and $(R,+)$ and define the mapping

$$
\alpha: R^{+} \rightarrow R \quad \text { by } \quad \alpha(a)=\log _{10} a .
$$

Show that α is an isomorphism.
IV. Let G be a group and for any $g \in G$ define $T_{g}: G \rightarrow G$ by

$$
T_{g}(x)=g x \quad \text { for all } \quad x \in G .
$$

If T_{g} is a permutation on the set of elements of G and

$$
\bar{G}=\left\{T_{g}: g \in G\right\}
$$

is the group of permutations under the composition $T_{g} T_{h}=T_{g h}$, prove that the mapping $\phi: G \rightarrow \bar{G}$ defined by $\phi(g)=T_{g}$ is an isomorphism.
V. Using Lagrange Theorem prove that a group of prime order is cyclic.
VI. Consider the groups G and \bar{G} and let $\phi: G \rightarrow \bar{G}$ be a group homomorphism. Show that:
(a) $\operatorname{Ker} \phi$ is a normal subgroup of G,
(b) $G / \operatorname{Ker} \phi \approx \phi(G)$.

Applications

I. Construct Cayley table for $U(12)$.
II. List all the subgroups of Z_{20}.
III. Find the order of the following elements:
(a) In $S_{5},|(345)(245)|=$
(b) $\operatorname{In}\left(Z_{20},+\right),|4|=$
(c) In $Z_{24}|<8\rangle,|14+<8\rangle \mid=$
IV. Show that $U(8)$ is isomorphic to $U(12)$.
V. Let G be a group of order 60 . What are the possible orders for the subgroups of G ?
VI. Consider the group of integers with addition $(Z,+)$. For the subgroup $H=\{0, \pm 6, \pm 12, \pm 18, \pm 24, \ldots\}$ of Z find all the left cosets of H in Z.

