King Abdulaziz University College of Science

Department of Mathematics

First Exam-Spring 2009-2010
14/4/2010
29/4/1431
1:20 minuts

Name: \qquad

Student ID:

\qquad
Section: \qquad

Course: Math 342
Title: Abstract Algebra I.

Instructor: Dr. Rola Hijazi

1. This exam consists of three parts

Part 1 True/False question (5 marks)	
Part 2 Fill in the blanks question $(3$ marks)	
part 3 Theory questions (12 marks)	
Total marks (20 marks)	

2. Answer ALL questions on the question sheets.
3. This exam sheet consists of 4 pages including this page.

I. True/ False

1	Every group has atmost one identity element.	
2	Finite nonempty subset of a group that is closed is a subgroup.	
3	In an abelian group $(a b)^{-1}=a^{-1} b^{-1}$.	
4	The additive group Z_{n} is a subgroup of the additive group Z.	
5	$\left(Z_{4}, \cdot\right)$ is a group under multiplication.	
6	If g is a group element and $g^{n}=e$, then $\|g\|=n$.	
7	Every element of a group generates a cyclic subgroup of that group.	
8	Every cyclic group has at least two generators.	
9	If $\|a\|=n$ and $a^{k}=e$, then $n \mid k$.	
10	If a group has an element of order 15 it must have at least 8 elements of order 15.	
11	For every positive integer n there exisits a cyclic group of order n.	

II. Fill in the blanks.

(a) The elements of $U(12)$ are \qquad
(b) $\operatorname{In} U(12),|U(12)|=$ \qquad and $|5|=$
(c) Let $4 \in Z_{12}$, then $|4|=$ \qquad
(d) Let $4 \in Z$, then $|4|=$ \qquad
(e) Let $5 \in Z_{24}$, then the inverse of 5 is \qquad
III. Consider the group $\left(Z_{20},+\right)$. Solve the following questions.
(a) Find the generators of Z_{20}.
(b) Find all subgroups of Z_{20}.
(c) Determined the subgroup lattice of Z_{20}.
(d) List all generators for the subgroup of order 5.
(e) deduce all elements of order 5 .
IV. Let G be a group, $H=\left\{a \in G: a H a^{-1}=H\right\}$. Show that $H \leq G$.
V. Show that $\left(Z_{n},+\right)$ is a commutative group.

