Chapter 7:
Cosets and
Lagrange's
Theorem
Dr. Jehan Al-bar

Chapter 7: Cosets and Lagrange's Theorem

Dr. Jehan Al-bar

December 18, 2010

Lagrange's Theorem and Consequences

Chapter 7:

Theorem

If G is a finite group and H is a subgroup of G, then $|H|$ divides $|G|$. Moreover, the number of distinct left (right) cosets of H in G is $|G| /|H|$.

The group G is the disjoint union of the left cosets $a_{i} H$, i.e $G=\cup_{i=1}^{r} a_{i} H$. So $|G|=\sum_{i=1}^{r}\left|a_{i} H\right|=r|H|$
Lagrange's theorem provides a list of candidates for the orders of the subgroups of a group. For instance, a group of order 12 may have subgroups of order $12,6,4,3,2,1$ but no other.

Chapter 7:
Cosets and

Dr. Jehan Al-bar

Definition

The index of a subgroup H in G is the number of distinct left cosets of H in G. and is denoted by $|H: G|$

Chapter 7:
Cosets and

Corollary ($|G: H|=|G| /|H|$)
If G is a finite group and H is a subgroup of G, then $|G: H|=|G| /|H|$.

Corollary (|a| Divides G)

In a finite group, the order of each element of the group divides the order of the group.

Chapter 7:
Cosets and Lagrange's Theorem

Dr. Jehan Al-bar

Corollary

A group of prime order is cyclic.

Corollary

Let G be a finite group and let $a \in G$, then $a^{|G|}=e$

Chapter 7:
Cosets and Lagrange's Theorem

Dr. Jehan Al-bar

Corollary (Fermat's Little Theorem)

For every integer a and every prime $p, a^{p} \bmod p=a \bmod p$.

The Converse of Lagrange's Theorem is False

Chapter 7:
Cosets and
Lagrange's
Theorem
Dr. Jehan Al-bar

Example

The group A_{4} of order 12 has no subgroups of order 6 . Verify!

