Chapter 5: Permutation Groups

Dr. Jehan Al-bar

Chapter 5: Permutation Groups

Dr. Jehan Al-bar

December 3, 2010

Properties of Permutations

Chapter 5: Permutation Groups

Dr. Jehan Al-bar

Theorem (Products of Disjoint Cycles)

Every permutation of a finite set can be written as a cycle or a product of disjoint cycles.

Theorem (Disjoint Cycles Commute)

If the pair of cycles $\alpha=\left(a_{1}, a_{2}, \ldots a_{m}\right)$ and $\beta=\left(b_{1}, b_{2}, \ldots b_{n}\right)$ have no entries in common, then $\alpha \beta=\beta \alpha$.

Properties of Permutations

Chapter 5:
Permutation
Groups
Dr. Jehan
Al-bar

One enormous advantage of expressing permutations in disjoint cycles form is the next theorem.

Theorem (Order of a Permutation)

The order of a permutation of a finite set written in disjoint cycle form is the least common multiple of the length of the cycles.

The least positive integer k for which $\alpha^{k}=\varepsilon$, is the order of α, where ε denotes the identity permutation.

Properties of Permutations

Chapter 5: Permutation Groups

Dr. Jehan Al-bar

Example

In S_{7}, which contains 5040 elements, use the above theorem to determined the orders of them.

Properties of Permutations

Chapter 5:
Permutation
Groups
Dr. Jehan
Al-bar

A transposition is a cycle of length 2 , that is a permutation of the form ($a b$), where $a \neq b$. The effect of $(a b)$ is to interchange a and b.

Theorem (Product of 2-Cycles)

Every permutation in S_{n}, for $n>1$, is a product of 2-cycles.
We can express the identity as (12)(12). For a permutation on the form

$$
\begin{aligned}
& \left(a_{1} a_{2} \ldots a_{k}\right)\left(b_{1} b_{2} \ldots b_{t}\right)\left(c_{1} c_{2} \ldots c_{s}\right)= \\
& \left(a_{1} a_{k}\right)\left(a_{1} a_{k-1}\right) \ldots\left(a_{1} a_{2}\right)\left(b_{1} b_{t}\right)\left(b_{1} b_{t-1}\right) \ldots\left(b_{1} b_{2}\right) \\
& \ldots \ldots \ldots \ldots .\left(c_{1} c_{s}\right)\left(c_{1} c_{s-1}\right)\left(c_{1} c_{2}\right) .
\end{aligned}
$$

Properties of Permutations

Chapter 5: Permutation Groups

Dr. Jehan Al-bar

Example

$$
\begin{aligned}
& (12345)=(15)(14)(13)(12) \\
& (12345)=(54)(52)(21)(25)(23)(13)
\end{aligned}
$$

Lemma

If $\varepsilon=\beta_{1} \beta_{2} \ldots \beta_{r}$, where β^{\prime} s are 2-cycles, then r is even.

Properties of Permutations

Chapter 5: Permutation

Groups
Dr. Jehan
Al-bar

Theorem (Always Even or Always Odd)

If a permutation α can be expressed as a product of an even(odd) number of 2-cycles, then every decomposition of α into a product of 2-cycles must have an even(odd) number of 2-cycles. In symbols, if

$$
\alpha=\beta_{1} \beta_{2} \ldots \beta_{r} \quad \text { and } \quad \alpha=\gamma_{1} \gamma_{2} \ldots \gamma_{s}
$$

where the β^{\prime} s and the $\gamma^{\prime} s$ are 2-cycles, then r and s are both even or both odd.

Even and Odd Permutations

Chapter 5:
Permutation
Groups
Dr. Jehan
Al-bar

Definition

A permutation that can be expressed as a product of an even number of 2 -cycles is called an even permutation. A permutation that can be expressed as a product of an odd number of 2-cycles is called an odd permutation.
According to the last two theorem, every permutation can be classified as either even or odd.

Even and Odd Permutations

Chapter 5: Permutation Groups
Dr. Jehan Al-bar

Theorem (Even Permutations form a Group)
The set of even permutations in S_{n} forms a subgroup of S_{n}.

Alternating Group of Degree n

Chapter 5:
Permutation
Groups
Dr. Jehan Al-bar

Definition

The group of even permutations of n symbols is denoted by A_{n} and is called the alternating group of degree n.
Exactly half of the elements of $S_{n}(n>1)$ are even permutations.

Theorem

For $n>1, A_{n}$ has order $n!/ 2$.

