King Abdulaziz University College of Science

DEPARTMENT OF MATHEMATICS

Second Exam-Fall 2010-2011 5/1/2011 30/1/1432

1:20 minuts

- 2. Answer **ALL** questions on the question sheets.
- 3. This exam sheet consists of 4 pages including this page.

I. True/ False

1	For $\alpha = (123)$ and $\beta = (45)$, $ \alpha\beta = 6$.
2	A function $f: \mathcal{R} \to \mathcal{R}$ defined by $f(x) = x^2$ is a permutation.
3	Every group is isomorphic to a group of permutation.
4	If α and β are disjoint cycles then $\alpha\beta = \beta\alpha$.
5	Every cyclic group of order n is isomorphic to Z_n .
6	The mapping on \mathcal{R} under addition given by $\phi(x) = x^3$ is an isomorphism.
7	$U(10) \simeq Z_4.$
8	If G is finite group and $a \in G$, then $ a G $.
9	If G is a group and H is a subgroup of G , then the left coset aH is a subgroup of G .
10	If $aH = Ha$, then $ah = ha$ for all $h \in H$.

II. Fill in the blanks.

- (a) The order of (156432) is, and the order of (134)(257896) is
- (b) The permutation (15632) is an permutation, while the permutation (2734) is an one.
- (c) If

Then $\alpha^{-1} = \dots$

and $\alpha\beta = \dots$

- (d) $|S_4| = \dots, |A_4| = \dots$
- (e) For a finite cyclic group G of order 8, G is isomorphic to
- (f) In the group $(Z_8, +)$, the left cosets of the subgroup $< 4 >= \{\overline{0}, \overline{4}\}$ are
- III. Let G be a group and |G| = 8, show that G must have an element of order 2.

IV. Let G be a finite cyclic group, |G| = n. Prove that $G \simeq Z_n$.

V. Let G be a group and H be a subgroup of G. For $a,b\in G$, prove that aH=bH or $aH\cap bH=\emptyset$.

VI. Show that the converse of Lagrange theorem it not true. Hint: use the group

 $A_4 = \{e, (12)(34), (13)(24), (14)(23), (123), (234), (134), (124), (132), (324), (314), (214)\}$