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13. 	An abstract algebra teacher intended to give a typist a list of nine in­
tegers that form a group under multiplication modulo 9l. Instead, 
one of the nine integers was inadvertently left out, so that the list ap­
peared as 1,9, 16,22,53,74,79,81. Which integer was left out? 

., (This really happened!) 

14l Let G be a group with the following property: Whenever a, b, and 
c belong to G and ab = ca, then b = c. Prove that G is Abelian. 
("Cross cancellation" implies commutativity.) 

15. 	(Law of Exponents for Abelian Groups) Let a and b be elements of 
an Abelian group and let n be any integer. Show that (ab)n = anbn. 
Is this also true for non-Abelian groups? 

16. 	(Socks-Shoes Property) Draw an analogy between the statement 
(ab) - l = b-Ia- I and the act of putting on and taking off your socks 
and shoes. Find an example that shows that in a group, it is possible 
to have (ab)-2 *- b-2a- 2. Find distinct nonidentity elements a and 
b from a non-Abelian group such that (ab)-I = a- 1b- 1.' 

1/17. 	Prove that a group G is Abelian if and only if (ab)-l = a-1b - 1 for 
all a and b in G. 

18. 	Prove that in a group, (a-1)-1 = a for all a. 

19. 	For any elements a and b from a group and any integer n, prove 
that (a-1ba)n = a-1bna. 

20. 	If ai' a2, ... ,an belong to a group, what is the inverse of a 1a2 ... an? 

21. 	The integers 5 and 15 are among a collection of 12 integers that 
form a group under multiplication modulo 56. List all 12 . 

22. 	Give an example of a group with 105 elements. Give two examples 
of groups with 44 elements. 

23. 	Prove that every group table is a Latin squarer; that is, each ele­
ment of the group appears exactly once in each row and each col­
umn. (This exercise is referred to in this chapter.) 

24. 	Construct a Cayley table for U(12) . 

25. 	Suppose the table below is a group table. Fill in the blank entries. 

e a b c d 

e e 
a b e 
b c d e 
c d a b 

d 

lLatin squares are useful in designing statistical experiments. There is also a close con­
necti on betwe~n Latin squares and finite geometries. 
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i6. 	Prove that if (ab)2 = a2b2 in a group G, then ab = ba. 

27. 	Let a, b, and c be elements of a group. Solve the equation axb = c 
for x. Solve a-1xa = c for x . 

28. 	Prove that the set of all rational numbers of the form 3m6n , where 
m and n are integers, is a group under multiplication. 

29. 	Let G be a finite group. Show that the number of elements x of G 
such that x3 = e is odd. Show that the number of elements x of G 
such that x2 * e is even. 

30. 	Give an example of a group with elements a, b, c, d, and x such 
that axb = cxd but ab * cd. (Hence "middle cancellation" is not 
valid in groups.) 

31. 	Let R be any rotation in some dihedral group and F any reflection 
in the same group. Prove that RFR = F. 

32. 	Let R be any rotation in some dihedral group and F, any reflection 
in the same group. Prove that FRF = R- 1 for all integers k. 

33. 	Suppose that G is a group with the property that for every choice 
of elements in G, axb = cxd implies ab = cd. Prove that G is 
Abelian. ("Middle cancellation" implies commutativity.) 

34. 	In the dihedral group Dn' let R = RJ60ln and let F be any reflection. 
Write each of the following products in the form Ri or RiF, where 
O:S i < n. 
a. In D

4
, FR- 2FRs 

b. In D ' R-JF~FR-2s 
c. In D

6
, FR5FR-2F 

35. Prove that if G is a group with the property that the square of every 
element is the identity, then G is Abelian. (This exercise is referred 
to in Chapter 26.) 

36. Prove that the set of all 3 X 3 matrices with real entries of the form 

is a group. (Multiplication is defined by 

a + a' b ' + ac ' + b] 
1 c' + c . 

001001 0 o 1
[ ~ 	 ~ ~ 1[~ ~' ~: 1 [~= 

This group, sometimes called the Heisenberg group after the 
Nobel Prize-winning physicist Werner Heisenberg, is intimatelyre­
lated to the Heisenberg Uncertainty Principle of quantum physics.) 
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37. 	Prove the assertion made in Example 19 that the set (1, 2, ... , 
n - I} is a group under multiplication modulo n if and only if n is 
pnme. 

38. 	In a finite group, show that the number of nonidentity elements 
that satisfy the equation x 5 = e is a multiple of 4. If the stipulation 
that the group be finite is omitted, what can you say about the 
number of nonidentity elements that satisfy the equation x 5 = e? 

39. 	Let G = {[: :] la E R, a¥-O }. Show that G is a group under 

matrix multiplication. Explain why each element of G has an inverse 
even though the matrices have °determinant. (Compare with Exam­
ple 10.) 

Almost immediately after the war, Johnny [Von Neumann] and I also began 
to discuss the possibilities of using computers heuristically to try to obtain 
insights into questions of pure mathematics. By producing examples and by 
observing the properties of special mathematical objects, one could hope to 
obtain clues as to the behavior of general statements which have been 
tested on examples. 

s. M. ULAM, Adventures ofa Mathematician 

Software for the computer exercises in this chapter is available at the web­
site: 

http://www.d.umn.edu/ - jgallian 

1. 	This software prints the elements of U(n) and the inverse of each 
element. 

2. 	This software determines the size of U(k). Run the program for 
k = 9,27,81,243,25, 125,49, 121. On the basis of this output, try 
to guess a formula for the size of U(pn) as a function of the prime 
p and the integer n. Run the program for k = 18, 54, 162, 486, 50, 
250,98,242. Make a conjecture about the relationship between the 
size of U(2pr!) and the size of U(pn), where p is a prime greater 
than 2. 

3. 	This software computes the inverse of any element in GL(2 , Z ), 
. . 	 p

where p IS a pnme. . 

4. 	This software determines the number of elements in GL(2, Z ) and 
SL(2, Z/ (The technical term for the number of elements in a ~roup 
is the order of the group.) Run the program for p = 3, 5,7, and 11. 

http:http://www.d.umn.edu
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Do you see a relationship between the orders of GL(2, Zp) and 
SL(2, Z ) and p - I? Does this relationship hold for p = 2? Based 

p 

on these examples, does it appear that p always divides the order 
of SL(2, Zp)? What about p - I? What about p + I? Guess a 
formula for the order of SL(2, Zp)' Guess a formula for the order 
of GL(2, Zp)' 

. - . - -, ­
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